hERG channel trafficking: novel targets in drug-induced long QT syndrome.
نویسندگان
چکیده
The cardiac potassium channel hERG (human ether-a-go-go-related gene) encodes the alpha-subunit of the rapid delayed rectifier current I(Kr) in the heart, which contributes to terminal repolarization in human cardiomyocytes. Direct block of hERG/I(Kr) channels by a large number of therapeutic compounds produces acLQTS [acquired LQTS (long QT syndrome)] characterized by drug-induced QT prolongation and torsades de pointes arrhythmias. The cardiotoxicity associated with unintended hERG block has prompted pharmaceutical companies to screen developmental compounds for hERG blockade and made hERG a major target in drug safety programmes. More recently, a novel form of acLQTS has been discovered that may go undetected in most conventional safety assays. Several therapeutic compounds have been identified that reduce hERG/I(Kr) currents not by direct block but by inhibition of hERG/I(Kr) trafficking to the cell surface. Important examples are antineoplastic Hsp90 (heat-shock protein 90) inhibitors such as (i) geldanamycin, (ii) the leukaemia drug arsenic trioxide, (iii) the antiprotozoical pentamidine, (iv) probucol, a cholesterol-lowering drug, and (v) fluoxetine, a widely used antidepressant. Increased awareness of drug-induced hERG trafficking defects will help to further reduce the potentially lethal adverse cardiac events associated with acLQTS.
منابع مشابه
Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking.
Direct block of the cardiac potassium channel human ether-a-go-go-related gene (hERG) by a large, structurally diverse group of therapeutic compounds causes drug-induced QT prolongation and torsades de pointes arrhythmias. In addition, several therapeutic compounds have been identified more recently that prolong the QT interval by inhibition of hERG trafficking to the cell surface. We used a su...
متن کاملRe-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes.
AIMS Long QT syndrome 2 (LQTS2) caused by missense mutations in hERG channel is clinically associated with abnormally prolonged ventricular repolarization and sudden cardiac deaths. Modelling monogenic arrhythmogenic diseases using human-induced pluripotent stem cells (hiPSCs) offers unprecedented mechanistic insights into disease pathogenesis. We utilized LQTS2-hiPSC-derived cardiomyocytes (CM...
متن کاملA common antitussive drug, clobutinol, precipitates the long QT syndrome 2.
QT prolongation, a classic risk factor for arrhythmias, can result from a mutation in one of the genes governing cardiac repolarization and also can result from the intake of a medication acting as blocker of the cardiac K(+) channel human ether-a-go-go-related gene (HERG). Here, we identified the arrhythmogenic potential of a nonopioid antitussive drug, clobutinol. The deleterious effects of c...
متن کاملPharmacological rescue of human K(+) channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block.
BACKGROUND Defective protein trafficking is a consequence of gene mutations. Human long-QT (LQT) syndrome results from mutations in several genes, including the human ether-a-go-go-related gene (HERG), which encodes a delayed rectifier K(+) current. Trafficking-defective mutant HERG protein is a mechanism for reduced delayed rectifier K(+) current in LQT2, and high-affinity HERG channel-blockin...
متن کاملMechanisms of arsenic-induced prolongation of cardiac repolarization.
Arsenic trioxide (As(2)O(3)) produces dramatic remissions in patients with relapsed or refractory acute promyelocytic leukemia. Its clinical use is burdened by QT prolongation, torsade de pointes, and sudden cardiac death. In the present study, we analyzed the molecular mechanisms leading to As(2)O(3)-induced abnormalities of cardiac electrophysiology. Using biochemical and electrophysiological...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 35 Pt 5 شماره
صفحات -
تاریخ انتشار 2007